Solutions to Workbook-2 [Mathematics] | Permutation & Combination

DAILY TUTORIAL SHEET 4 Level - 1

76.(ABD) Number of triangles = ${}^{3p}C_3 - p({}^{3}C_3) = \frac{p}{2}(3p-1)(3p-1) - p = \frac{9p^2(p-1)}{2}$

Another approach to solve this is:

Case 1: All 3 points on three different lines: ${}^{p}C_{3} \times \left({}^{3}C_{1}\right)^{3} = 27 {}^{p}C_{3}$ triangles

Case 2: 2 points on 1 line and 1 point on another: ${}^{p}C_{2} \times \left({}^{2}C_{1}\right) \times {}^{3}C_{2} \times {}^{3}C_{1} = 18 {}^{p}C_{2}$ triangles

77.(C) Case I: Triangle contains one vertex as O. For No. of triangles, follow the steps as given:

: Select 1 point on L_1 in nC_1 ways

: Select 1 point on L_2 in nC_1 ways Step II

Case II : No triangle has O as its vertex.

Select 1 point on L_2 in nC_1 ways

No. of triangles $=\binom{n}{C_1}\times{}^nC_1)=n^2$ No triangle has O as its vertex.

Select 2 points on \mathbb{R}^n Step I : Select 2 points on line L_1 in nC_2 ways and one on line L_2 in nC_1 ways.

Step II : Select 1 point on line L_1 in nC_1 ways and two points on line L_2 in nC_2 ways.

No. of ways =
$${}^{n}C_{2}{}^{n}C_{1} + {}^{n}C_{1}{}^{n}C_{2}$$

$$2\frac{n(n-1)}{2}.n = n^2(n-1)$$

Total no. of triangles $n^2 + n^2(n-1) = n^3$

79.(A) The total number of points is 18. From these 18 points we can obtain ${}^{18}C_3$ triangles. However, if all the 3 points are chosen on the same straight line, we do not get a triangle. Therefore, the required number of triangles = ${}^{18}C_3 - 3({}^{5}C_3 + {}^{6}C_3 + {}^{7}C_3) = 751$

80.(D) Maximum number of triangles = ${}^{3n}C_3 - 3 \cdot {}^{n}C_3$.

81.(C) $x_1 + x_2 + x_3 = 0$; $x_i \ge -5$; i = 1, 2, 3

Let $x_i = y_i + (-5)$ \Rightarrow $y_1 + y_2 + y_3 = 15$; $y_i \ge 0$ \Rightarrow Hence, number of ways = 15 + 3 - 1 $C_{3-1} = 17$ C_2

82.(B) $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 30$; $x_i \ge 4$

 $y_1 + y_2 + y_3 + y_4 + y_5 + y_6 = 6$ where $y_i \ge 0$ [Use $x_i = y_i + 4$]

Total number of ways = $6 + 6 - 1C_{6-1} = 462$

83.(A) $x + y + z = n, n \ge 3$

As per question, $x \ge 1, y \ge 1, z \ge 1$

Let $x = x_1 + 1$; $y = y_1 + 1$; $z = z_1 + 1$ [where, $x_1 \ge 0, y_1 \ge 0, z_1 \ge 0$]

 $(x_1+1)+(y_1+1)+(z_1+1)=n$

 $x_1 + y_1 + z_1 = n - 3; x_1 \ge 0, y_1 \ge 0, z_1 \ge 0$

Number of ways = $^{n-3+3-1}C_{3-1} = ^{n-1}C_2$

84.(B) x + y + z + 12 = 0

 $x = -k_1, y = -k_2$ and $z = -k_3; k_1, k_2, k_3 > 0$

$$k_1 + k_2 + k_3 = 12$$

 $k_1 \ge 1, k_2 \ge 1, k_3 \ge 1$ [as $k_i > 0 \implies k_i \ge 1$]
Number of ways $= \frac{12-1}{12}$ $= \frac{11}{12}$ = 55

Number of ways =
$${}^{12-1}C_{3-1} = {}^{11}C_2 = \frac{11!}{2!9!} = 55$$

85.(C)
$$x + y + z = 100$$
 where $x \ge 1, y \ge 1, z \ge 1$ $x_1 + y_1 + z_1 = 97; x = x_1 + 1, y = y_1 + 1, z = z_1 + 1$

Number of ways =
$${}^{97+3-1}C_{3-1} = {}^{99}C_2 = 4851$$
 or simply apply ${}^{n-1}C_{r-1}$

86.(B)
$$a+b+c \le 8$$
 ; $a \ge 1, b \ge 1, c \ge 1$
 $a = a'+1, b = b'+1, c = c'+1$; $a'+b'+c' \le 5; a', b', c' \ge 0$

88.(A)
$$x_1 + x_2 + x_3 + x_4 = 6$$
; $1 \le x_i \le 6$; $i = 1, 2, 3, 4$
coeff. of x^6 in $(x + x^2 + \infty)^4 \equiv \text{coeff. of } x^2$ in $(1 + x + x^2 + ... \infty)^4$
 $= \text{coeff. of } x^2$ in $(1 - x)^{-4} = 4 + 2 - 1$ $C_2 = {}^5C_2 = 10$

Another approach
$$x_1+x_2+x_3+x_4=6; \ x_i\geq 1. \ \ \text{Hence, number of ways}=6-1\\ C_{4-1}=5\\ C_3=10$$

89.(A)
$$x + y + z = 15$$

Let $x = x_1 = 0$; $x_1 \ge 0$
 $y = y_1 + 1$; $y_1 \ge 0$
 $z = z_1 + 2$; $z_1 \ge 0$
 $x_1 + y_1 + z_1 = 12$; $x_1 \ge 0, y_1 \ge 0, z_1 \ge 0$
 $12 + 3 - 1$ $C_{3-1} = {14 \choose 2} = {14! \choose 12! 2!} = 91$

90.(D)
$$15 < x_1 + x_2 + x_3 \le 20; x_i \ge 1 \text{ (given } +ve \text{ roots)}$$
 \Rightarrow $16 \le x_1 + x_2 + x_3 \le 20$

[No. of solutions of
$$x_1 + x_2 + x_3 \le 20$$
] – [No. of solutions of $x_1 + x_2 + x_3 \le 15$]
$$\downarrow \qquad \qquad \downarrow \\ x_1 + x_2 + x_3 + x_4 = 20 \qquad \qquad x_1 + x_2 + x_3 + x_4 \ge 15$$

Number of required solutions =
$$^{20}C_3 - ^{15}C_3 = 685$$

91.(A)
$$a+b+c+d=20$$
 Let $a=2k_1+1; \ k_2\geq 0, b=2k_2+1; \ k_2\geq 0, c=2k_3+1; \ k_3\geq 0, d=2k_4+1; \ k_4\geq 0$ $2k_1+2k_2+2k_3+2k_4=16 \Rightarrow k_1+k_2+k_3+k_4=8k\geq 0 \ \forall \ i=1 \ \text{to} \ 4$ Number of solutions $= {8+4-1 \choose 4-1} = {11\choose 3} = 165$

Total number of non-negative integral solutions of the given equation is same as the number of ways of distributing 100 items among 4 persons such that each person can receive any number of items.

Hence, total number of solutions =
$$^{100 + 4 - 1}C_{4-1} = ^{103}C_3$$
.

Vidyamandir Classes

93.(BD)
$$x_1 + x_2 + x_3 + x_4 \le n$$

Let y_4 be a non-negative integer, such that $x_1 + x_2 + x_3 + x_4 + y_4 = n$

Total number of solutions = $^{n+4-1}C_{4-1} = ^{n+3}C_3$

94.(D) Say
$$x_4 = r$$

Total number of solutions = $^{20-4r+2}C_2$ = $^{22-4r}C_2$

Total number of solutions = $\sum_{r=0}^{5} {}^{22-} {}^{4r}C_2$

95.(A)
$$x_1 x_2 x_3 = 60 = 2^2 \cdot 3 \cdot 5$$

Say,
$$x_1 = 2^{a_1} \cdot 3^{b_1} \cdot 5^{c_1}$$
, $x_2 = 2^{a_2} \cdot 3^{b_2} \cdot 5^{c_2}$ and $x_3 = 2^{a_3} \cdot 3^{b_3} \cdot 5^{c_3}$

$$\Rightarrow x_1 x_2 x_3 = 2^{a_1 + a_2 + a_3} \cdot 3^{b_1 + b_2 + b_3} \cdot 5^{c_1 + c_2 + c_3}$$

$$a_1 + a_2 + a_3 = 2$$
; Total no. of solutions = 4C_2

$$b_1 + b_2 + b_3 = 1$$
; Total no. of solutions = 3C_2

$$c_1 + c_2 + c_3 = 1$$
; Total no. of solutions = 3C_2 \Rightarrow Total no. of solutions = ${}^4C_2 \cdot {}^3C_2 \cdot {}^3C_2 = 54$

96.(B) Twenty pearls
$$\equiv 10$$
 pearls of one color and 10 pearls of another color

Step I: First arrange pearls of same color in $\frac{1}{2}(10-1)! = \frac{1}{2} \times 9!$ ways

Step II: Now arrange pearls of another color in between the arranged 10 pearls in 10! Ways.

No. of ways =
$$\left(\frac{1}{2} \times 9!\right) \times 10! = 5 \times \left(9!\right)^2$$

97.(D)
$$x = 6! \times 6! + 6! \times 6! = 2(6!)^2$$
 and $y = 5! \times 6!$ \therefore $\frac{x}{y} = 2 \times 6 \implies x = 12y$

- **98.(A)** Total number of ways = 4!3!
- **99.(A)** The 4 men can be seated at the circular table such that there is a vacant seat between every pair of men in (4-1)! = 3! ways.

Now, 4 vacant seats can be occupied by 4 women in 4! ways.

100.(D) First arrange 6 men around the table in $|\underline{5}$ ways. Now, there are 6 gaps between these men. Select any 5 gaps and arrange the women in these gaps in ${}^6C_5 \times |\underline{5}|$ ways. So, the required number of ways $|\underline{5} \times {}^6C_5 \times |\underline{5}| = |\underline{6} \times |\underline{5}|$.